14 research outputs found

    Stability of MultiComponent Biological Membranes

    Get PDF
    Equilibrium equations and stability conditions are derived for a general class of multicomponent biological membranes. The analysis is based on a generalized Helfrich energy that accounts for geometry through the stretch and curvature, the composition, and the interaction between geometry and composition. The use of nonclassical differential operators and related integral theorems in conjunction with appropriate composition and mass conserving variations simplify the derivations. We show that instabilities of multicomponent membranes are significantly different from those in single component membranes, as well as those in systems undergoing spinodal decomposition in flat spaces. This is due to the intricate coupling between composition and shape as well as the nonuniform tension in the membrane. Specifically, critical modes have high frequencies unlike single component vesicles and stability depends on system size unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We show that the predictions of the analysis are in qualitative agreement with experimental observations

    Theoretical study of biological membrane response to temperature gradients at the single cell level

    Get PDF
    Recent experimental studies provide evidence for the existence of a spatially nonuniform temperature field in living cells and in particular in their plasma membrane. These findings have led to the development of a new and exciting field: thermal biology at the single-cell level. This study examines theoretically a specific aspect of this field, i.e. how temperature gradients at the single cell level affect the phase behavior and geometry of heterogeneous membranes. We address this issue by utilizing the Onsager reciprocal relations combined with a simple model for a binary lipid mixture. We demonstrate that even small temperature variations along the membrane may introduce intriguing phenomena, such as phase separation above the critical temperature and unusual shape response. These results also suggest that the shape of a membrane can be manipulated by dynamically controlling the temperature field in its vicinity. Experimental verification of these results could mark the beginning of a new line of research in the field of biological membranes. We report our findings with the hope of inspiring others to perform such experiments

    Biological membranes from the perspective of smart materials ā€“ A theoretical study

    Get PDF
    AbstractThe unique properties and diverse functionality of biological membranes make them excellent candidates for nano-scale applications, such as sensors and actuators. Taking the view of biological membranes as smart bio-materials, we study the behavior of a simply supported beam made from a biological membrane-like material. Equilibrium configurations are derived by calculating the first variation of a generalized Helfrich energy, and their stability is examined by means of the second variation. Our numerical results demonstrate the richness of phenomena exhibited by these structures, in accordance with experimental observation of multi-component vesicles. Further, we demonstrate that the intriguing behavior of biological membrane beams, which is fundamentally different from standard beams and from standard Cahn Hilliard systems, can be utilized for actuation and sensing. For example, temperature and also pressure difference across the membrane can be indirectly measured by gauging the fluorescence intensity of the membrane components

    Boomerons in a 1-D lattice with only nearest-neighbor interactions

    No full text
    We report on the existence of boomerons in a 1-D periodic lattice with no on-site potentials. Following an impact, a spatially localized wave phenomenon forms. This envelope wave packet, with frequency within the propagating band of small-amplitude waves, propagates into the chain, decelerates, and reverses direction without any external forcing. Our results show that this remarkable response requires the nearest-neighbor interactions to have non-convex potential with a branch of negative stiffness. It is suggested that the reversing motion is a consequence of the intriguing interaction between the localized phenomenon and the trail of nonlinear waves behind it

    Curvature-Induced Spatial Ordering of Composition in Lipid Membranes

    No full text
    Phase segregation of membranal components, such as proteins, lipids, and cholesterols, leads to the formation of aggregates or domains that are rich in specific constituents. This process is important in the interaction of the cell with its surroundings and in determining the cellā€™s behavior and fate. Motivated by published experiments on curvature-modulated phase separation in lipid membranes, we formulate a mathematical model aiming at studying the spatial ordering of composition in a two-component biomembrane that is subjected to a prescribed (imposed) geometry. Based on this model, we identified key nondimensional quantities that govern the biomembrane response and performed numerical simulations to quantitatively explore their influence. We reproduce published experimental observations and extend them to surfaces with geometric features (imposed geometry) and lipid phases beyond those used in the experiments. In addition, we demonstrate the possibility for curvature-modulated phase separation above the critical temperature and propose a systematic procedure to determine which mechanism, the difference in bending stiffness or difference in spontaneous curvatures of the two phases, dominates the coupling between shape and composition

    A coarse-grained model of the myofibril: Overall dynamics and the evolution of sarcomere non-uniformities

    Get PDF
    A theoretical framework for predicting the macroscopic behavior of a muscle myofibril based on the collective behavior of sarcomeres is presented. The analysis is accomplished by rigorously transforming the nonlinear dynamics of an assemblage of sarcomeres into a partial differential equation for the probability distribution function of sarcomere lengths in the presence of stochastic temporal fluctuations and biological variability. This enables the study of biologically relevant specimens with reasonable computational effort. The model is validated by a comparison to quantitative experimental results. Further, it reproduces experimental observations that cannot be explained by standard single sarcomere models, and provides new insights into muscle function and muscle damage during cyclic loading. We show that the accumulation of overstretched sarcomeres, which is related to muscle damage, depends on a delicate interplay between the dynamics of a large number of sarcomeres and the load characteristics, such as its magnitude and frequency. Further, we show that biological variability rather than stochastic fluctuations are the main source for sarcomere non-uniformities
    corecore